Slope and Similar Triangles

Pages 115-117

1. (a) For the triangle defined by $(-6,-4)$ and $(0,-2)$, $\frac{\text { rise }}{\text { run }}=\frac{-2-(-4)}{0-(-6)}=\frac{2}{6}=\frac{1}{3}$. For the triangle defined by $(0,-2)$ and $(6,0), \frac{\text { rise }}{\text { run }}=\frac{0-(-2)}{6-0}$ $=\frac{2}{6}=\frac{1}{3}$.
(b) When you are computing the slope of a line, you can choose any two points on the line and you will always get the same slope.
2. (a) For the triangle defined by $(-2,-10)$ and $(2,-4)$, $\frac{\text { rise }}{\text { run }}=\frac{-4-(-10)}{2-(-2)}=\frac{6}{4}=\frac{3}{2}$. For the triangle defined by $(2,-4)$ and $(8,5), \frac{\text { rise }}{\text { run }}=\frac{5-(-4)}{8-2}$ $=\frac{9}{6}=\frac{3}{2}$.
(b) When you are computing the slope of a line, you can choose any two points on the line and you will always get the same slope.
3. (a)

(b) For the triangle defined by $(-2,-4)$ and $(0,0)$, $\frac{\text { rise }}{\text { run }}=\frac{0-(-4)}{0-(-2)}=\frac{4}{2}=2$. For the triangle defined by $(0,0)$ and $(3,6), \frac{\text { rise }}{\text { run }}=\frac{6-0}{3-0}$ $=\frac{6}{3}=2$. For the triangle defined by $(-2,-4)$ and $(3,6), \frac{\text { rise }}{\text { run }}=\frac{6-(-4)}{3-(-2)}=\frac{10}{5}=2$. Since the ratio of $\frac{\text { rise }}{\text { run }}$ represents the slope of the line, the hypotenuse of each triangle has the same slope, a constant value of 2 .
4. (a)

(b) For the triangle defined by $(-5,2)$ and $(4,5)$, $\frac{\text { rise }}{\text { run }}=\frac{5-2}{4-(-5)}=\frac{3}{9}=\frac{1}{3}$. For the triangle defined by $(4,5)$ and $(7,6), \frac{\text { rise }}{\text { run }}=\frac{6-5}{7-4}=\frac{1}{3}$.
For the triangle defined by $(-5,2)$ and $(7,6)$, $\frac{\text { rise }}{\text { run }}=\frac{6-2}{7-(-5)}=\frac{4}{12}=\frac{1}{3}$. Since the ratio of $\frac{\text { rise }}{\text { run }}$ represents the slope of the line, the hypotenuse of each triangle has the same slope, a constant value of $\frac{1}{3}$.
5. (a)

(b) For the triangle defined by $(-3,0)$ and $(-1,1)$, $\frac{\text { rise }}{\text { run }}=\frac{1-0}{-1-(-3)}=\frac{1}{2}$. For the triangle defined by $(-1,1)$ and $(5,4), \frac{\text { rise }}{\text { run }}=\frac{4-1}{5-(-1)}=\frac{3}{6}=\frac{1}{2}$.
For the triangle defined by $(-3,0)$ and $(5,4)$, $\frac{\text { rise }}{\text { run }}=\frac{4-0}{5-(-3)}=\frac{4}{8}=\frac{1}{2}$. Since the ratio of $\frac{\text { rise }}{\text { run }}$ represents the slope of the line, the hypotenuse of each triangle has the same slope, a constant value of $\frac{1}{2}$.
6. (a)

(b) For the triangle defined by $(2,6)$ and $(3,1)$, $\frac{\text { rise }}{\text { run }}=\frac{1-6}{3-2}=\frac{-5}{1}=-5$. For the triangle defined by $(3,1)$ and $(5,-9), \frac{\text { rise }}{\text { run }}=\frac{-9-1}{5-3}$ $=\frac{-10}{2}=-5$. For the triangle defined by $(2,6)$ and $(5,-9), \frac{\text { rise }}{\text { run }}=\frac{-9-6}{5-2}=\frac{-15}{3}=-5$. Since the ratio of $\frac{\text { rise }}{\text { run }}$ represents the slope of the line, the hypotenuse of each triangle has the same slope, a constant value of -5 .
7. (a)

(b) For the triangle defined by $(-8,5)$ and $(-4,2)$, $\frac{\text { rise }}{\text { run }}=\frac{2-5}{-4-(-8)}=\frac{-3}{4}$. For the triangle defined by $(-4,2)$ and $(4,-4), \frac{\text { rise }}{\text { run }}=\frac{-4-2}{4-(-4)}$ $=\frac{-6}{8}=-\frac{3}{4}$. For the triangle defined by $(-8,5)$ and $(4,-4), \frac{\text { rise }}{\text { run }}=\frac{-4-5}{4-(-8)}=\frac{-9}{12}=-\frac{3}{4}$. Since the ratio of $\frac{\text { rise }}{\text { run }}$ represents the slope of the line, the hypotenuse of each triangle has the same slope, a constant value of $-\frac{3}{4}$.
8. (a)

(b) For the triangle defined by $(-4,-7)$ and $(-1,-2)$, $\frac{\text { rise }}{\text { run }}=\frac{-2-(-7)}{-1-(-4)}=\frac{5}{3}$. For the triangle defined by $(-1,-2)$ and $(5,8), \frac{\text { rise }}{\text { run }}=\frac{8--2}{5-(-1)}=\frac{10}{6}$ $=\frac{5}{3}$. For the triangle defined by $(-4,-7)$ and $(5,8), \frac{\text { rise }}{\text { run }}=\frac{8-(-7)}{5-(-4)}=\frac{15}{9}=\frac{5}{3}$. Since the ratio of $\frac{\text { rise }}{\text { run }}$ represents the slope of the line, the hypotenuse of each triangle has the same slope, a constant value of $\frac{5}{3}$.
